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Nondriven polymer translocation through a nanopore: Computational evidence that the escape
and relaxation processes are coupled
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Most of the theoretical models describing the translocation of a polymer chain through a nanopore use the
hypothesis that the polymer is always relaxed during the complete process. In other words, models generally
assume that the characteristic relaxation time of the chain is small enough compared to the translocation time
that nonequilibrium molecular conformations can be ignored. In this paper, we use molecular dynamics simu-
lations to directly test this hypothesis by looking at the escape time of unbiased polymer chains starting with
different initial conditions. We find that the translocation process is not quite in equilibrium for the systems
studied, even though the translocation time 7 is about 10 times larger than the relaxation time 7,. Our most
striking result is the observation that the last half of the chain escapes in less than ~12% of the total escape
time, which implies that there is a large acceleration of the chain at the end of its escape from the channel.
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I. INTRODUCTION

The translocation of polymers is the process during which
a flexible chain moves through a narrow channel to go from
one side of a membrane to the other. Many theoretical and
numerical models of this fundamental problem have been
developed during the past decade. These efforts are moti-
vated in part by the fact that one of the most fundamental
mechanism of life, the transfer of RNA or DNA molecules
through nanoscopic biological channels, can be described in
terms of polymer translocation models. Moreover, recent ad-
vances in manipulating and analyzing DNA moving through
natural [1,2] or synthetic nanopores [3] strongly suggest that
such mechanical systems could eventually lead to the devel-
opment of new ultrafast sequencing techniques [1,4-11].
However, even though a great number of theoretical [12-23]
and computational [24—43] studies have been published on
the subject, there are still many unanswered questions con-
cerning the fundamental physics behind such a process.

The best known theoretical approaches used to tackle this
problem are the ones derived by Sung and Park [12] and by
Muthukumar [13]. Both of these methods study the diffusion
of the translocation coordinate s, which is defined as the
fractional number of monomers on a given side of the chan-
nel (see Fig. 1). Sung and Park use a mean first passage time
(MFPT) approach to study the diffusion of the translocation
coordinate. Their method consists in representing the trans-
location process as the diffusion of the variable s over a
potential barrier that represents the entropic cost of bringing
the chain halfway through the pore. The second approach,
derived by Muthukumar, uses nucleation theory to describe
the diffusion of the translocation coordinate. Several other
groups have worked on these issues (see Refs. [14,16,17,22],
for example), and many were inspired by Sung and Park’s
and/or by Muthukumar’s work. However, such models as-
sume that the subchains on both sides of the membrane re-
main in equilibrium at all times; this is what we call the

*gary.slater @uOttawa.ca

1539-3755/2009/79(2)/021802(7)

021802-1

PACS number(s): 82.35.Lr

quasiequilibrium hypothesis. This assumption effectively al-
lows one to study polymer translocation by representing the
transport of the chain using a simple biased random-walk
process [15,44,45].

In the case of driven translocation, simulations monitoring
the radius of gyration of the subchains on both sides of the
membrane have shown that the chains are not necessarily at
equilibrium during the complete translocation process
[35,41]. However, as far as we know, no direct investigation
of the quasiequilibrium hypothesis has been carried out so
far for unbiased translocations, although it is commonly used
to conduct theoretical studies. For example, the fundamental
hypothesis behind the one-dimensional model of Chuang et
al. [27] is that the translocation time is much larger than the
relaxation time so that the polymer would have time to
equilibrate for each new value of s. Chuang et al. found that
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FIG. 1. (Color online) Schematic representation of our simula-
tion system. The wall consists in a single layer of beads on a trian-
gular lattice while the pore itself is formed by simply removing one
wall bead (some wall beads and all of the solvents beads have been
removed for clarity). This simulation system is described in details
in Refs. [46,47]. The trans side of the membrane is defined as the
side where the chain terminates its translocation process (its final
destination). The translocation coordinate s is defined as the ratio of
the number of monomers on the cis side of the membrane, n, to the
total number of monomers in the chain N (0<s=n/N<1).
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the translocation time should scale as N*° and N''> with and
without hydrodynamic interactions, respectively. Their as-
sumption is indirectly supported by the observation made by
Guillouzic and Slater [46] using molecular dynamics simu-
lation with explicit solvent that the scaling exponent of the
translocation time 7 with respect to the polymer length N
(7~N>?7) is larger than the one measured for the relaxation
time (7,~N'7!). We recently made similar observations for
larger nanopore diameters [47]. The main goal of the current
paper is to carry out a direct test of the fundamental assump-
tion that is behind most of the theoretical models of translo-
cation: that the chain can be assumed as relaxed at all times
during the translocation process (the quasiequilibrium hy-
pothesis). We will be using two sets of simulations to com-
pare the translocation dynamics of chains that start with the
same initial value of s but that differ in the way they reached
this initial state.

II. SIMULATION METHOD

We use the same simulation setup as in our previous pub-
lication [46,47]. In short, we use coarse-grained molecular
dynamics (MD) simulations of unbiased polymer chains ini-
tially placed in the middle of a pore perforated in a one bead
thick membrane (see Fig. 1). The simulation includes an ex-
plicit solvent. All particles interact via a truncated (repulsive
part only) Lennard-Jones potential and all connected mono-
mers interact via a finitely extensible nonlinear elastic
(FENE) potential. The membrane beads are held in place on
a triangular lattice using an harmonic potential and the pore
is made by removing a single bead. All quantities presented
in this paper are in standard MD units; i.e., the lengths and
the energies are in units of the characteristic parameters of
the Lennard-Jones potential o and €, while the time scales
are measured in units of \mo?/e where m represents the
mass of the fluid particles. The simulation box size is of
~28.10X29.20X27.50, where the third dimension is the
one perpendicular to the wall, and periodic boundary condi-
tions are used in all directions during the simulation. We
refer the reader to Refs. [46,47] for more details. Note that
this simulation setup was shown to correctly reproduce
Zimm relaxation time scalings [47].

The simulation itself is divided into two steps; (1) the
warm-up period during which the ith bead of the polymer is
kept fixed in the middle of the pore while its two subchains
are relaxing on opposite sides of the wall and (2) the trans-
location (or escape) period itself during which the polymer is
completely free to move until all monomers are on the same
side of the membrane (note that the final location of the
chain defines the frans side of the membrane in this study
since we have no external driving force that would define a
direction for the translocation process). The time duration of
the first period was determined from previous simulations
[46,47] using the characteristic decay time of the autocorre-
lation function of the chain end-to-end vector. The time
elapsed during the second period is what we refer to as the
translocation time 7. These times are somehow similar to the
blockade times measurements made by Henrickson er al.
[48] in the low voltage limit.
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FIG. 2. (Color online) Schematic representation of our two sets
of simulations, called R (for relaxed) and NR (for not relaxed). For
the NR case, the middle monomer is kept fixed inside the pore
during the initial warm-up relaxation phase. The polymer then
moves freely until it completely escapes from the pore. However,
the translocation clock then starts only when the polymer reaches
state s=s, for the first time. In the R case, the polymer is initially
prepared in the s=s, state and allowed to relax with its (Nsg+ 1)th
monomer fixed inside the pore. The translocation clock then starts
immediately after the chain is released. The two sets of simulations
thus differ only in the way the initial chain is prepared.

In previous papers [46,47], we calculated both the relax-
ation time 7,(N) and the translocation time 7(N) for polymers
of lengths N between 15 to 31 monomers in the presence of
the same membrane-pore system. Our simulation results 7
~1.38N%3 and 7',20.43N1'8 in MD units, indicate that the
escape time is at least 10 times longer than the relaxation
time for this range of polymer sizes. These translocation
times correspond to polymers starting halfway through the
channel and the relaxation times were calculated with the
center monomer [i.e., monomer i=(N+1)/2, where N is an
odd number] kept fixed in the middle of the pore.

As we mentioned in the Introduction, the goal of this
paper is to run two different sets of simulations in order to
directly test the quasiequilibrium hypothesis (see Fig. 2). In
the first type of simulations (that we will call NR for “not
relaxed,” we start with the same configuration as in the pre-
vious paper: the polymer chain is initially placed halfway
through the pore, then allowed to relax with its middle
monomer fixed, and is finally released. However, we do not
start to calculate the translocation time from that moment;
instead, we wait until the translocation coordinate has
reached a particular value s=s for the first time (see the top
part of Fig. 2). The translocation time 7'X(s,) thus corre-
sponds to a chain that starts in state s=s, with a conforma-
tion that is affected by the translocation process that took
place between states s=1/2 and s=s,. In the second series of
simulations (called R for “relaxed”), we allow the chain to
relax in state s=s, before it is released. In other words, the
(Nsy+ 1)th monomer is fixed during the warm-up period (see
the bottom part of Fig. 2); the corresponding translocation
time 7%(sy) now corresponds to a chain that is fully relaxed
in its initial state s=s,. Obviously, the quasiequilibrium hy-
pothesis implies the equality 7R(sy)=17%(s,), a relationship
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FIG. 3. (Color online) Translocation times 7 for relaxed (R) and
not relaxed (NR) polymers. The initial condition is so=6/N for all
molecular sizes.

that we will be testing using extensive molecular dynamics
simulations. In both cases, we include all translocation
events in the calculations, including those that correspond to
backward translocations (i.e., translocations towards the side
where the smallest subchain was originally found).

III. NR VS R: THE ESCAPE TIMES

Figure 3 shows the translocation times obtained from
these two sets of simulations when we choose the starting
point so=6/N (six monomers on one side of the wall, and all
the others on the other side). We clearly see that the translo-
cation process is faster when the polymer is initially relaxed
(R). The difference between the two escape times is around
25% for all polymer lengths N. Since the relaxation state of
the chain at s=s is the only difference between the two set
of results, this indicates that the NR polymers are not fully
relaxed at s=s(. Thus, contrary to the commonly used as-
sumption, even an unbiased polymer is not in quasiequilib-
rium during its translocation process.

Also interesting is the probability to escape on the side
where the longest subchain was at the beginning of the simu-
lation. We observed (data not shown) that this probability
was always ~10-20 % times larger in the R simulations.
This observation also confirms the fact that the chain is out
of equilibrium during translocation since its previous trajec-
tory even affects the final outcome of the escape process.
Note that we did verify that this difference is not the reason
why the escape times are different.

IV. NR VS R: THE RADII OF GYRATION

As we will now show, the slower NR translocation pro-
cess is due to a nonequilibrium compression of the subchain
located on the trans side of the wall. By compression, we
mean that the radius of gyration R, of that part of the poly-
mer is smaller than the one it would have if it were in a fully
relaxed state.

Figure 4 compares the mean radius of gyration of the
subchain on the frans side at s=s, for both the relaxed (R)
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FIG. 4. (Color online) The radius of gyration of the longest
subchain vs polymer size N. We show values corresponding to the
beginning (s=sy=6/N) and the end (sy=0) of the process, both for
chains that were initially relaxed (R) and nonrelaxed (NR). The fifth
data set is the radius of gyration of a relaxed chain of length N
[46,47].

and the nonrelaxed (NR) states (the two first curves from
bottom). The radius of gyration is larger for the relaxed state
when the number of monomers is greater than about 19, i.e.,
R?(s=s0)>RgNR(s=so) if N>19. This is the second result
that suggest the translocation process is not close to equilib-
rium. Moreover, this discrepancy between the two states in-
creases with N (the two curves diverge) over the range of
polymer lengths studied here. Figure 4 also shows that this
difference is negligible by the time the escape is completed
[Rg(s=0) %R?R(s=0)]. However, it is important to note that
the final radius of gyration is always smaller than the value
we would obtain for a completely relaxed chain of size N
(the top line, R,~0.357 N%"). Of course, this means that
the R simulations, which start with equilibrium conforma-
tions, also finish with nonequilibrium states.

V. THE s(t) CURVE

Why do we observe such a large amount of compression
when the translocation time is more than ten times larger
than the relaxation time? A factor of ten would normally
suggest that a quasi-equilibrium hypothesis would be ad-
equate. The answer to this question is clearly illustrated in
Fig. 5 where we look at the normalized translocation coordi-
nate s'=s(t")/s, as a function of the scaled time ¢'. These
NR simulations used the initial condition so=1/2 (thus start-
ing with symmetric conformations and maximizing the es-
cape times). For a given polymer length, each s(z) curve (we
have typically used ~500 runs per polymer length) was re-
scaled using its own escape time ?,,,,, such that ¢’ =¢/7,,,, and
0=<1t"=<1. These curves were then averaged to obtain eight
rescaled data sets (one for each molecular size in the range
13<N<231; note that N must be an odd number). Remark-
ably, the eight rescaled curves were essentially undistin-
guishable (data not shown). This result thus suggests that the
time evolution of the translocation coordinate s(¢) follows a
universal curve; the latter, defined as an average over all
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FIG. 5. (Color online) Scaled translocation coordinate s’
=s5(t")/sy as a function of scaled time ' =t/t,,,, where f,, is the
individual translocation time for each translocation event that was
simulated. Eight curves (not shown) were obtained for N=13, 15,
17, 19, 21, 23, 27, and 31 the following way: for a given chain
length initially placed halfway through the pore, (1) each of the
translocation events gives a s(¢) curve that goes from s(0)=1/2 to
$(tma) =0, (2) then each of these curves is rescaled in time using
t' =1/t (3) and finally, the time axis is discretized and all the
curves for that given N are averaged along the y axis. Data points
(circles) are the average of these eight curves which are not shown
since their distribution was of the order of the data point sizes. The
solid line that fits the universal curve represented by the complete
data set is given by Eq. (3). The inset presents the acceleration of
the scaled translocation coordinate d2s’/dt'? obtained from Eq. (3).

molecular sizes, is shown (circles) in Fig. 5. Please note that
the translocation coordinate is defined with respect to the
final destination of the chain (s=N/N), and not the side
with the shortest subchain at a given time.

This unexpected universal curve has two well-defined
asymptotic behaviors: (1) for short times, we observe the
apparent linear functional

s'(1')=1-0318¢, (1)

which we obtain using only the first 10% of the data and (2)
as t' — 1, the average curve decays rapidly towards zero fol-
lowing the power law relation

s'(1)=1.31 X (1 —¢")048, (2)

this time using the last 10% of the data. The whole data set
can then be fitted using the interpolation formula

s'(t") = (1+0.130¢' +0.216¢'2) X (1 —")048 (3)

where the coefficient of the ¢’ term is the only remaining
fitting parameter. Equation (3) is the solid line that fits the
complete data set in Fig. 5. As we can see, this empirical
fitting formula provides an excellent fit.

Figure 5 can be viewed as the percentage of the translo-
cation process (in terms of the number of monomers that
have yet to cross the membrane in the direction of the frans
side) as a function of the percentage of the (final transloca-
tion) time elapsed since the beginning. The small shaded
region in Fig. 5 represents the second material half (as op-
posed to temporal half) of the escape process (s=sy/2).
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However, this region approximatively covers only the last
~12% of the rescaled time axis; this clearly implies a strong
acceleration of the chain at the end of its exit. The first 50%
of the monomer translocations take the first ~88% of the
total translocation time. The inset in Fig. 5 emphasizes the
fact that the translocation coordinate is submitted to a strong
acceleration at the late stage of the translocation process.

This large acceleration of the translocation process is en-
tropy driven. At short times, the difference in size between
the two subchains is small, and entropy is but a minor player.
At the end of the process, however, this difference is very
large and the corresponding gradient in conformational en-
tropy drives the process, thus leading to a positive feedback
mechanism. Translocation is then so fast that the subchains
cannot relax fast enough and the quasiequilibrium hypothesis
fails. The trans subchain is compressed because the mono-
mers arrive faster than the rate at which this coil can expand.
The ratio of ten between the translocation time and the re-
laxation time (for the polymer lengths and initial conditions
that we have used) is too small because half of the translo-
cation takes place in the last tenth of the event.

Finally, the existence of a universal curve is a most inter-
esting result. Clearly, our choice of rescaled variables has
allowed us to find the fundamental mechanisms common to
all translocation events. This universal curve is expected to
be valid as long as the radius of gyration of the polymer
chain is much larger than the pore size, and it demonstrates
that our results are not due to finite size effects. Finally, we
present in the Appendix an asymptotic derivation to explain
the apparent short time linear scaling of the translocation
coordinate. This demonstration is based on the the fact that,
in this particular limit, the motion is purely described by
unbiased diffusion, a case for which we can do analytical
calculations.

VI. THE R,(T) CURVE

Still more evidence that undriven (no external field) trans-
location is not a quasiequilibrium process is presented in Fig.
6(a), where we show how the mean radius of gyration of the
subchain located on the trans side of the wall changes with
(rescaled) time during the NR translocation process (like in
the previous section, we have chosen the initial condition
so=1/2 here). All the curves have approximatively the same
shape, i.e., an initial period during which the radius of gyra-
tion increases rather slowly, followed by an acceleration pe-
riod that becomes very steep at the end. When these curves
are rescaled by a three-dimensional Flory factor of N
[Ry(t')=R,(1')/N*", see Fig. 6(b)], they seem to all fall ap-
proximatively onto each other. As we observed for the trans-
location coordinate (s'), the radius of gyration R,(¢') is ex-
periencing a noticeable acceleration at the end of the
translocation process. Again, the shaded zone in Fig. 6 shows
that the second half of the process occurs in the last ~11%
of the translocation time.

If we assume that Flory’s argument (R,~N>7) is valid
during the complete translocation process, we must be able
to translate the expression given by Eq. (3) in order to fit the
increase of the radius of gyration presented in Fig. 6(b), i.c.,
we should have
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FIG. 6. (Color online) (a) Radius of gyration on the trans side of
the wall as a function of the scaled translocation time. Each simu-
lation event is rescaled using the time #,,,, it took to exit the channel
(t'=t/tpna). The scaled time is then always bounded between
0<t'<1. From bottom to top, the eight curves were obtained for
N=13, 15, 17, 19, 21, 23, 27, and 31 by averaging R,(') over
hundreds of simulations (typically ~500 runs). (b) Rescaling of the
curves presented in part (a). Each radius of gyration curve was
divided by N*® to obtain the gray curves (R;=R,/N*7). The
smooth curve is given by Eq. (4) with a proportionality constant of
0.315. The shaded region covers the last 11% of the translocation
time and begins at the midpoint of the average radius of gyration
increases, i.e., at R;g(t’) %[R;g(l)+R;(0)]/2.

S/(tr)>3/5
2 b

R;(t’) =b X (1 - (4)
where the 1—s'(¢")/2 represents the fraction of the chain that
is on the frans side at the time ¢’ and b is a length scale
proportional to the Kuhn length of the chain. We used Eqgs.
(3) and (4) to fit the average of the eight R;,(t’) curves pre-
sented in Fig. 6(b) and obtained »=0.315 (see the smooth
curve). This one-parameter fit does a decent job until we
reach about 80% of the maximum time. However, it clearly
underpredicts R, in the last stage of the translocation process,
i.e., during the phase of strong acceleration discussed previ-
ously. This observation also validates the fact that the trans-
location process is out of equilibrium during that period. In
fact, the failure of the three-dimensional Flory’s argument is
also highlighted by the scaling of the radius of gyration at the
end of the translocation process. Indeed, the third and fourth
data sets presented in Fig. 4 have a slope that is around 0.73,
which is closer to the two-dimensional Flory’s scaling of
Rg —_ N3/4.
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VII. CONCLUSION

In summary, we presented three different numerical re-
sults that contradict the hypothesis that polymer translocation
is a quasiequilibrium process in the case of unbiased polymer
chains in the presence of hydrodynamic interactions. First,
we reported a difference in translocation times that depends
on the way the chain conformation is prepared, with relaxed
chains translocating faster than chains that were in the pro-
cess of translocating in the recent past. Second, we saw that
the lack of relaxation also leads to conformational differ-
ences (as measured by the radius-of-gyration R,) between
our two sets of simulations; in fact, translocating chains are
highly compressed. Third, perhaps the strongest evidence is
the presence of a large acceleration of both the translocation
process (as measured by the translocation parameter s) and
the growth of the radius of gyration: roughly half of the
escape actually occurs during a time duration comparable to
the relaxation time. The large difference between the mean
relaxation and translocation times is not enough to ensure the
validity of the quasiequilibrium hypothesis under such an
extreme situation. It is important to note, however, that a
longer channel would increase the frictional effects (and
hence the translocation times) while reducing the entropic
forces on both sides of the wall; we thus expect the quasi-
equilibrium hypothesis to be a better approximation in such
cases.

The curve presented in Fig. 5 is quite interesting. It dem-
onstrates that the translocation dynamic is a highly nonlinear
function of time. We proposed an empirical formula (3) to
express the evolution of the translocation coordinate as a
function of time (both in rescaled units) that provides an
excellent fit to our simulation data. Based on Flory’s argu-
ment for a three-dimensional chain, we presented a second
expression (4) of a similar form for the increase of the radius
of gyration during the translocation process. However, this
relationship is not valid for the complete translocation pro-
cess, yet more evidence of the lack of equilibrium at the late
stage of the chain escape.

Finally, going back to the question in the title of this ar-
ticle, we conclude that the chain shows some clear signs of
not being in a quasiequilibrium state during unforced trans-
location (especially at the end of the escape process). How-
ever, although the difference is as large as 25% when we
start with only six monomers on one side, we previously
demonstrated [46,47] that this simulation setup gives the ex-
pected scaling laws. The latter observation is quite surprising
and leads to a nontrivial question: why scaling laws that
were derived using a quasiequilibrium hypothesis predict the
proper dynamical exponents for chains that are clearly out of
equilibrium during a non-negligible portion of their escape?
Perhaps the impact of these nonequilibrium conformations
during translocation would be larger for thicker walls or
stiffer chains; this remains to be explored. Obviously, the
presence of an external driving force, such as an electric
field, would lead the system further away from equilibrium;
we thus speculate that there is a critical field below which the
quasiequilibrium hypothesis remains approximately valid,
but beyond which the current theoretical exponents may
have to be revisited.
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APPENDIX: DERIVATION OF THE SCALED
TRANSLOCATION COORDINATE IN THE SHORT
TIME LIMIT

In the short time limit, the translocation variable diffuses
normally from its initial position (the potential landscape is

prob. exit same side

where L is the total length of the chain. The first term is the
probability to exit on the side where the chain is, times the
corresponding translocation coordinate (s <0.5). The second
term refers to chains that will eventually exit on the other
side of the channel (s>0.5). Remember that we defined the
translocation coordinate with respect to the side where the
chain eventually exits the channel. Consequently, the prob-
abilities used in the last equation are obtained from the so-
Iution of the one-dimensional first-passage problem of an
unbiased random walker diffusing between two absorbing
boundaries. The solution to this problem is explained in great
details in Ref. [49]; the only result of interest for us is that
the probabilities to be absorbed by the two boundaries are
given by 0.5 £x’, where x’ is the fractional distance between
the particle position and the midpoint between the two
boundaries.
Combining the last two equations gives (using sy=1/2)

) Tl —-x*\1-4xYL?
s'(1) = ——cexp| |~ —dx
_» 2Dt 2Dt 25
1 [~ 1 (—xz)
=— = exp| —— |dx
280J _ 2Dt 2Dt

2 (7 1 (—xz)xzd |4
— exp| = | 5dx=1-—-,
so) . \2Dim P\ 2pr) 12 r

(A3)
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very flat, see Fig. 2 in Ref. [13]). In such a case, entropic
pulling can be neglected and the translocation problem is
equivalent to a nonbiased first-passage problem in which the
displacement x(¢) from the initial position as a function of
time grows following a Gaussian distribution. Consequently,
if diffusion is normal, the scaled translocation coordinate is
given by

0 1 _ 2
— exp(—x)s’(x)dx,

—» \2Dtw 2Dt

s'(t) = (A1)

where D is the diffusion coefficient and s’(x) is the scaled
translocation coordinate of the chain when it has moved over
a curvilinear distance x(z). According to our definition of the
scaled translocation coordinate s’, the latter value is given by

prob. exit other side

1 1| Y 1| 1 |x]
=— —+— ——-— ]+ ——— —+—1
S0 2 L 2 L 2 L 2 L

%(_J H_/

s(1) (A2)

which predicts a linear decrease of the scaled translocation
coordinate in the limit of very short time. One should note
that the later derivation is strictly for short times since en-
tropic pulling will eventually bias the chain translocation
process.

Finally, we can test our derivation by comparing our re-
sult with the linear regression presented in Fig. 5. This gives
us that

0318 4D

= —2’
tmax L

(A4)

which is equivalent to

2Dt = (0.399L)?. (A5)

This means that, if entropic effects are neglected, a chain
would travel a distance approximatively equal to 0.4 of its
total length during a time equal to the observed translocation
time. The fact that this result is smaller than 0.5L (the value
corresponding to complete translocation) is an indication that
entropy accelerates the escape of the chain. The slope of
—0.318 indicates that translocation would be approximatively
3 times slower if entropic effects were cancelled. Finally, one
should bear in mind that our linear decrease prediction is for
normal diffusion only. However, Chuang et al. predicted an
anomalous diffusion exponent of 0.92 [27]. It would not be
possible to observe the effect of such slightly subdiffusive
regime with the precision of our data here.

021802-6



NONDRIVEN POLYMER TRANSLOCATION THROUGH A ...

[1] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer,
Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).
[2] A. Meller, L. Nivon, and D. Branton, Phys. Rev. Lett. 86,
3435 (2001).
[3] P. Chen, J. Gu, E. Brandin, Y.-R. Kim, Q. Wang, and D. Bran-
ton, Nano Lett. 4, 2293 (2004).
[4] Y. Astier, O. Braha, and H. Bayley, J. Am. Chem. Soc. 128,
1705 (2006).
[5] D. W. Deamer and D. Branton, Acc. Chem. Res. 35, 817
(2002).
[6] S. Howorka, S. Cheley, and H. Bayley, Nat. Biotechnol. 19,
636 (2001).
[7] J. J. Kasianowicz, Nature Mater. 3, 355 (2004).
[8]J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Lett. 6, 779
(2006).
[9] M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435
(2007).
[10] W. Vercoutere, S. Winters-Hilt, H. Olsen, D. Deamer, D. Haus-
sler, and M. Akeson, Nat. Biotechnol. 19, 248 (2001).
[11] H. Wang and D. Branton, Nat. Biotechnol. 19, 622 (2001).
[12] W. Sung and P. J. Park, Phys. Rev. Lett. 77, 783 (1996).
[13] M. Muthukumar, J. Chem. Phys. 111, 10371 (1999).
[14] A. M. Berezhkovskii and I. V. Gopich, Biophys. J. 84, 787
(2003).
[15] O. Flomenbom and J. Klafter, Phys. Rev. E 68, 041910
(2003).
[16] K. K. Kumar and K. L. Sebastian, Phys. Rev. E 62, 7536
(2000).
[17] D. K. Lubensky and D. R. Nelson, Biophys. J. 77, 1824
(1999).
[18] T. Ambjérnsson and R. Metzler, Phys. Biol. 1, 77 (2004).
[19] E. A. DiMarzio and A. J. Mandell, J. Chem. Phys. 107, 5510
(1997).
[20] A. Matsuyama, J. Chem. Phys. 121, 8098 (2004).
[21] R. Metzler and J. Klafter, Biophys. J. 85, 2776 (2003).
[22] E. Slonkina and A. B. Kolomeisky, J. Chem. Phys. 118, 7112
(2003).
[23] A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny,
and C. Dekker, Nano Lett. 5, 1193 (2005).
[24] 1. Ali and J. M. Yeomans, J. Chem. Phys. 123, 234903 (2005).
[25] A. Baumgirtner and J. Skolnick, Phys. Rev. Lett. 74, 2142
(1995).
[26] S.-S. Chern, A. E. Cardenas, and R. D. Coalson, J. Chem.

PHYSICAL REVIEW E 79, 021802 (2009)

Phys. 115, 7772 (2001).

[27] J. Chuang, Y. Kantor, and M. Kardar, Phys. Rev. E 65, 011802
(2001).

[28] J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A.
Vilgis, Europhys. Lett. 79, 18002 (2007).

[29] J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A.
Vilgis, Phys. Rev. E 76, 010801(R) (2007).

[30] Z. Farkas, I. Derényi, and T. Vicsek, J. Phys.: Condens. Matter
15, S1767 (2003).

[31] I. Huopaniemi, K. Luo, T. Ala-Nissila, and S.-C. Ying, J.
Chem. Phys. 125, 124901 (2006).

[32] Y. Kantor and M. Kardar, Phys. Rev. E 69, 021806 (2004).

[33] C. Y. Kong and M. Muthukumar, Electrophoresis 23, 2697
(2002).

[34] H. C. Loebl, R. Randel, S. P. Goodwin, and C. C. Matthai,
Phys. Rev. E 67, 041913 (2003).

[35] K. Luo, I. Huopaniemi, T. Ala-Nissila, and S.-C. Ying, J.
Chem. Phys. 124, 114704 (2006).

[36] K. Luo, T. Ala-Nissila, and S.-C. Ying, J. Chem. Phys. 124,
034714 (2006).

[37] K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, J.
Chem. Phys. 126, 145101 (2007).

[38] S. Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and
C. Clementi, Phys. Rev. Lett. 96, 118103 (2006).

[39] A. Milchev and K. Binder, J. Chem. Phys. 121, 6042 (2004).

[40] D. Panja, G. T. Barkema, and R. C. Ball, J. Phys.: Condens.
Matter 19, 432202 (2007).

[41] P. Tian and G. D. Smith, J. Chem. Phys. 119, 11475 (2003).

[42] D. Wei, W. Yang, X. Jin, and Q. Liao, J. Chem. Phys. 126,
204901 (2007).

[43]J. K. Wolterink, G. T. Barkema, and D. Panja, Phys. Rev. Lett.
96, 208301 (2006).

[44] M. G. Gauthier and G. W. Slater, J. Chem. Phys. 128, 065103
(2008).

[45] M. G. Gauthier and G. W. Slater (unpublished).

[46] S. Guillouzic and G. W. Slater, Phys. Lett. A 359, 261 (2006).

[47] M. G. Gauthier and G. W. Slater, Eur. Phys. J. E 25, 17
(2008).

[48] S. E. Henrickson, M. Misakian, B. Robertson, and J. J. Kasian-
owicz, Phys. Rev. Lett. 85, 3057 (2000).

[49] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, 2001).

021802-7



